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The construction of e�cient electrolysers requires a detailed knowledge of the mass ¯ows, currents
and temperatures in the cell. The paper describes three successive models designed for modelling
transfers in an industrial electrolysis cell for ¯uorine production. The conservation laws for charge,
mass and energy are approximated by use of a Galerkin ®nite element code. The solution of coupled
transfers is necessary to describe the thermal behaviour of the cell. The method used here may be
extended to the modelling of other electrochemical cells.
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1. Introduction

There is substantial literature on numerical models
devoted to current distribution, thermal problems
and ¯uid mechanics in electrochemical cells [1]. Most
work is illustrated by simple geometry problems and
few papers deal with the potential ®eld, heat and
mass distribution, and coupled transfers [2]. Model-
ling electrochemical cells is an economic challenge [3]

which has led to scienti®c problems in the molten salt
®eld being approached in relation to aluminium [4±7]
and ¯uorine production [8].

2. Speci®c features of the ¯uorine cells

Fluorine evolving carbon anodes exhibit unusually
high overpotentials generated, according to Conway
[9±11], by the e�ect of a nonohmic charge transfer

* This paper was presented at the Fourth European Symposium on Electrochemical Engineering, Prague, 28±30 August 1996.

List of symbols

Cp Speci®c heat �J kgÿ1 Kÿ1�
E reversible cell potential (V)
Ethn thermoneutral potential (V)
F Faraday constant �96 485 Cmolÿ1�
g acceleration of gravity �m sÿ2�
h heat transfer coe�cient �Wmÿ2 Kÿ1�
i local current density �Amÿ2�
I current (A)
JNF input current density on the busbar �Amÿ2�
k thermal conductivity �Wmÿ1 Kÿ1�
n normal vector
ne number of electrons
P pressure (Pa)
PeM mesh Peclet number
Qth volumetric rate of thermal losses �Wmÿ3�
R electrolyte resistance �X�
S entropy �J molÿ1 Kÿ1�
T temperature (K)
Tamb ambient temperature (K)

U cell measured potential (V)
v ¯uid velocity vector �m sÿ1�
vx, vy cartesian components of the velocity vector

�m sÿ1�
V potential (V)
Dl length of a mesh in the ¯ow direction (m)

Greek symbols
ai arbitrary test function
d interface thickness (m)
e surface emissivity
l electrolyte dynamic viscosity �kgmÿ1 sÿ1�
ga anodic overpotential (V)
gc cathodic overpotential (V)
q density �kgmÿ3�
r electric conductivity �Smÿ1�
rint equivalent electric conductivity �Smÿ1�
rSB Stephan±Boltzmann constant �Wmÿ2 Kÿ4�
$ gradient
r divergence
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barrier layer due to `CF' ®lm formation. Moreover,
due to di�culties of ¯uorine bubble detachment, a
special adherent gas ®lm is formed on the anode. The
KF±2HF molten salt electrolyte used in the ¯uorine
industry in corrosive and its physical properties, es-
pecially its thermal conductivity, are not well known.
This physical property is a key parameter in the
modelling of coupled transfers in this type of elec-
trolytic cell and its determination is essential. No data
concerning the thermal conductivity of the KF±2HF
molten salt used in industrial ¯uorine electrolysis
have been found in the literature. This parameter was
obtained experimentally [12].

The electrolyser also has speci®c characteristics
[13]. A ¯uorine cell requires the presence of skirts
placed between anodes and cathodes in order to
separate the evolved gases and prevent explosive re-
combination of F2 and H2. Due to these skirts, the
anode±cathode distance is large, leading to consid-
erable ohmic drop and large Wagner numbers. The
unusual overpotentials encountered create strong ir-
reversibility at each electrode leading to signi®cant
thermal losses. Thus, there is a considerable interac-
tion between electrical and thermal modelling and it
is necessary to model the cell by considering strong
numerical coupling between the electrical and ther-
mal equations.

The strongly coupled transfer appearing are a
priori too complex to be modelled directly. Three
successive models of increasing complexity are
therefore presented here on the basis of an electro-
lyser slightly di�erent from the industrial cell for
reasons of con®dentiality.

3. Modelling of the electrolytic cell behaviour

Flux-ExpertÒ (F.E.) [14], a commercial software tool
designed for the numerical modelling of miscella-
neous physical problems was used. This code is based
on the Galerkin ®nite element method [15]. This
method, compared to other numerical methods [16±
18], is particularly well adapted to solving coupled
partial di�erential equations with peculiar boundary
conditions and complex geometry. In contrast to
methods using a constant step rectangular mesh, the
®nite element method allows the use of a very ®ne
mesh in the regions requiring special attention and a
larger mesh elsewhere. Moreover, in contrast to most
software, F.E. is not written for a particular class of
problem only, and a part of the code can easily be
modi®ed by an experienced user [19] to de®ne speci®c
F.E. equations describing complex coupled problems.
This feature is described in the Appendix. It is used to
generate the F.E. equations described in the paper.

The primary current distribution is obtained from
the solution of the Laplace equation:

r�ÿr$V � � 0 �1�
This equation may be solved with di�erent boundary
conditions related to current or potential:

V � constant �2�

ÿr�$V n� � 0 �3�
ÿr�$Vn� � JNF �4�

corresponding, respectively, to a Dirichlet condition
used for an imposed potential (2), a homogeneous
Von Neumann condition applied to insulated walls
(3), and a nonhomogeneous Von Neumann condition
(4) used to impose a uniform current density, JNF .

The Laplace equation (1) was solved for a 2D
cross section of a schematic industrial cell of a
0:480 m� 0:857 m cross section. For reasons of
symmetry and computer e�ciency, only half a cell is
studied, as shown in Fig. 1. The calculations were
made by applying boundary conditions of type (4) on
the upper edge of the bus bar (Fig. 1) and V � 0 of
type (2) on both cathodes.

The solver supplies a fast and accurate potential
distribution. The current vectors are postprocessed
from the gradients of computed potentials. The
equipotential curve map is reasonable (Fig. 2) and the
computed current density vectors shows a satisfac-
tory appearance (Figs 3 and 4). Since the skirts and
the tank are made of conducting metals, some current
¯ow is seen in both the conducting skirts and the
tank. However, comparison of the numerical results
obtained from the model to measurements shows that
the computed cathode±anode potential drop was far
less than that observed. This con®rms that modelling
the secondary distribution of current is an essential
condition for obtaining realistic potentials.

The secondary current distribution is characterized
by a steep potential interfacial discontinuity in the
¯uorine case. For example, a 2:5 V anodic potential
drop is observed for a typical mean anodic current
density of 2000 Amÿ2. Modelling such a potential

Fig. 1. Schematic crosssection of one half of a ¯uorine cell.
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step is a priori incompatible with the ®nite element
method which postulates the continuity of the main
variable (e.g., the potential) [15]. The method devel-
oped to overcome this di�culty [20] is described
elsewhere [21]. The basic idea consists of introducing
a hypothetical very thin resistive layer with an un-
known electrical conductivity rint at the interface
(Fig. 5(a)). This layer is not meshed but is taken into
account by use of a special F.E. linear ®nite element

named termed an interfacial element [21]. The elec-
trical conductivity, rint, of the pseudo-element de-
pends on both the resistive layer thickness, d, and the
local current density according to a Tafel or Butler±
Volmer law or an experimental data ®le. Using the
plan of Fig. 5, the requirement of potential continuity
is satis®ed in the thin layer, and the secondary dis-
tribution can then be solved as a primary distribu-
tion. The solution is obtained using an iterative
process to compute in sequence; an initial global
potential distribution, an equivalent electrical con-
ductivity rint, an interfacial current density in the
layer, a local overpotential, a new global potential
etc. In some works the electrode conductivity is as-
sumed to be in®nitely large to avoid this computa-
tion. One main advantage of this method is that the
current density distribution required by the thermal
equation is obtained in all the cell elements, including
electrodes and busbar.

Potential measurements made with small copper
wires placed in a full scale ¯uorine pilot electrolyser

Fig. 2. Equipotential curves for primary current distribution. Key:
(1) 0:0 V; (2) 0:4 V; (3) 0:8V; (5) 1:2V; (6) 2:0V.

Fig. 3. Secondary current density distribution.

Fig. 4. Close-up current ¯owing from bus bar to anode.

Fig. 5. Schematic illustration of the secondary current distribution
model (a) and related equipotential curves (b). Key: (1) 0:0V; (2)
0:5V; (3) 1:0V; (4) 1:5V; . . . (9) 9:5V.
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[22] showed a fairly good, 95% , agreement between
experiments and numerical results. Thus, there is no
need to solve the tertiary current distribution since
the model re¯ects the real electrokinetic behaviour of
the cell (Fig. 5(b)).

4. Modelling of the thermal cell behaviour

The thermal behaviour is a key feature for a ¯uorine
cell since hot spots can induce local corrosion prob-
lems on various fragile parts of the cell, while too low
a temperature can locally freeze the molten salt. Both
phenomena are undesired and can lead to a signi®-
cant reduction in the life of the electrolyser. Thus a
realistic prediction of the isotherms is needed in order
to ®nd a set of optimal conditions leading to a con-
venient uniformity of the temperature ®eld in the cell.

In the ®rst step, a global thermal balance was
made to determine all the heat transfer terms in-
volved in the cell [23]. Several thermal ¯ows are easily
estimated:

(i) Convection and radiation at external surfaces of
the electrolyser may easily be calculated when
the wall temperature and the ambient tempera-
ture are measured from an estimation of the
convection coe�cient, h, using the McAdams
correlation [24].

(ii) The cooling thermal ¯ows due to the coils are
estimated from temperatures and water ¯ow
rates measured at the cell inlet and outlet.

(iii) The enthalpy carried by both gases is obtained
from temperature and gas ¯ow rate measure-
ments.

In such a high current density process, large
quantities of heat are generated through irreversibil-
ity phenomena (overpotentials and ohmic drop). The
total heat production, Qth, is the sum of the irre-
versible and reversible sources:

Qth � �U ÿ E�iÿ i
neF

TDS �5�

The last term in Equation 5 is di�cult to compute. It
is, therefore, easier to use the concept of the ther-
moneutral potential, Ethneut, de®ned as the potential
applied when the heat losses due to irreversibility of
reaction exactly compensate the heat of reaction [25].
Ethneut was obtained from measurements on a small
scale pilot plant electrolyser maintained at thermal
equilibrium [22]. The global heat losses, Qth, at each
point of the cell depend on both the applied cell po-
tential U and Ethneut:

Qth � U ÿ Ethneut� �i �6�
Irreversibilities arise from overpotentials and ohmic
drop included in the U term and generate two dif-
ferent heat sources. Since overpotentials originate at
the electrode interface, the model computes overpo-
tential, local heating at the electrode interface and the
ohmic drop in every conducting part of the cell.

Since the physical properties of each cell material
also depend on the local temperature, the following
set of coupled partial di�erential equations must be
solved:

$�ÿr $V � � 0

$�ÿk $T � � Qth

(
�7�

V and T , k and r play a symmetrical role in these
equations. The boundary conditions are similar to
Equations (2±4) but the thermal equation implies an
additional Fourier condition at the outer walls of the
cell:

ÿk�$Tn� � h T ÿ Tamb� � � rSBe T 4 ÿ T 4
amb

ÿ � �8�
The ®nal equation takes into account convection and
radiation e�ects at the outer walls of the cell. Equa-
tions 7 and 8 were solved simultaneously using an
original F.E. equation and a Newton±Raphson
algorithm.

The resulting maps for equipotential curves and
current density vectors are similar to those obtained
with the previous model (Fig. 5(b)). The calculated
isotherms seem realistic (Fig. 6), for it appears that
the centre of the cell is warmer than the peripheral
zones, which are cooled by coils, wall advection and
radiation.

These calculations were made using an estimated
thermal conductivity of the KF±2HF molten salt [12].
However, the range of temperatures obtained from
the model does not correspond to measurements. In
this model, the thermal conductivity had to be arti-
®cially increased to 20Wmÿ1 Kÿ1 to correspond to
the thermal observations (Fig. 7). Such an overesti-

Fig. 6. Temperature pro®les computed with the actual value of k.
Temperatures: (1) 325K; (2) 340K; (3) 355K; (4) 370K; (5) 385K;
(6) 400K; (7) 415K; (8) 430K; (9) 445K; (10) 457K.
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mated conduction may be interpreted as a compen-
sation for the internal advection which was neglected
in this calculation. In fact these results suggest that a
gravity gradient, due to temperature pro®les and
bubble e�ects, induces some inner convection which
homogenizes the temperature pro®les in the cell. This
e�ect requires modi®cation of the model by the
coupling of Equations 7 with the Navier±Stokes
equations.

5. Hydrodynamic model of the cell

The model is based on the assumption that the bub-
ble e�ects can be neglected, so the model includes the
previous equations and the Navier±Stokes equations
for noncompressible single phase Newtonian ¯uids:

r�ÿr$V � � 0

qCp�v$T � � r�ÿk $T � � Qth

q vx
@vx

@x
� vy
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� @

@x
l 2

@vx

@x
ÿ 2

3
�rv�

� �� �
� @

@y
l
@vx

@y
� @vy

@x

� �� �
q vx

@vy

@x
� vy

@vy

@y

� �
�ÿ @P

@y
� @

@x
l
@vy

@x
� @vx

@y

� �� �
� @

@y
l 2

@vy

@y
ÿ 2

3
rv

� �� �
� qg

r�qv� � 0 �9�
The set of partial di�erential, Equations 9, was solved
with the previous boundary conditions (Equations 2,
3, 4, 7) but one more condition on ¯uid velocity was
added at the walls:

vx � vy � 0 �10�
This two-dimensional model actually includes ®ve
variables namely potential, temperature, pressure and
velocity vector. Equations 9 are strongly coupled by
means of temperature and current density. Such
coupling would normally require the simultaneous
solution of the ®ve variable equations (9) on a mesh
containing, in our case, about 100 000 nodes, leading
to a huge memory requirement (up to 128 Mo for the
half cell presented in Fig. 1) and a long iterative
process.

The results were obtained within four hours using
an IBMÒ RISC 6000/43P workstation equipped with
96 Mo RAM and a 192 Mo swap by use of an al-
ternate algorithm [23] solving, in sequence, each
equation of (9). This process was iterated until con-
vergence was obtained simultaneously for potentials,
temperatures and velocity.

Some numerical convergence problems were en-
countered due to an unfavourable advection/con-
duction ratio related to the non-dimensional mesh
Peclet number de®ned as

PeM � qCpv
k

Dl �11�
where v is the magnitude of the velocity vector and Dl
is the mesh length in the ¯ow direction. This problem
was solved by use of a ®ne mesh comprising 250 000
nodes in order to maintain the value of PeM at less
than 2.

Convection has no e�ect on the potential and
current distributions, but Fig. 8 shows that the tem-
perature pro®les are slightly modi®ed when the Na-
vier±Stokes equations are taken into account.
Surprisingly, it was still necessary to increase the
value of the thermal conductivity of the KF±2HF
electrolyte up to 20Wmÿ1 Kÿ1 to obtain a conve-
nient temperature distribution in this calculation. The
actual velocities are unknown in such a molten salt
cell, but the vector velocity ®eld appears appropriate
even if a maximum velocity as high as 0:45 m sÿ1 may
be an overestimation (Fig. 9). This result indicates
that free convection due to gravity e�ects is not so
in¯uential as initially thought. Actually the inner
convection is probably only governed by the gas
bubbles evolving at each electrode. An improved
model describing the peculiar e�ects of evolving ¯u-
orine and hydrogen bubbles on the cell hydrody-
namics is being studied.

6. Conclusions

Based on the coupled charge and thermal transfer
model presented here, the electrical and thermal be-
haviour of a ¯uorine cell is now well understood. It
is possible to optimize the electrolyser geometry in
order to reduce the cell voltage and, thus, the e�ective
cost of industrial cells. At the present time, we are
developing a new model to take into account the
complex bubble e�ects encountered in ¯uorine pro-
duction to make the model more e�cient.

Fig. 7. Temperature pro®les computed with k � 20Wmÿ1 Kÿ1.
Temperature: (1) 325K; (2) 331K; (3) 337K; (4) 343K; (5) 349K;
(6) 355K; (7) 361K; (8) 367K; (9) 373K; (10) 379K.
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Appendix

As an example, we describe here the process leading
to a speci®c F.E. equation in order to solve any
physical problem ruled by the Laplace equation. The
Laplace equation to be solved on a domain X reads as

r�ÿr$V � � 0 �1�
For an electrolyser, the boundary conditions imposed
at an interface @X are

V � constant �2�
ÿr$Vn � 0 �3�

ÿr$Vn � JNF � constant �4�
Using an arbitrary ai test function, Equation 1 can be
transformed in the integral equationZZ

X

air�ÿr$V� dx dy � 0 �5�

Since for any scalar p and vector A

$�pA� � prA� A$p and prA � r�pA� ÿ A$p

�6�

Fig. 8. Temperature pro®les with convection. Temperature: (1)
325K; (2) 332K; (3) 339K; (4) 346K; (5) 353K; (6) 360K; (7)
367K; (8) 374K; (9) 381K; (10) 388K.

Fig. 9. Velocity vectors (modelled with free convection).
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Equation 5 may be written asZZ
X

air�ÿr$V � �
ZZ

X

r ÿai r$V� � �
ZZ

X

r$V $ai

�7�
Since

ZZ
X

rA dx dy �
Z
@X

An dl, then

ZZ
X

r ÿair$ V� � �
Z
@X

ÿair$V � n dl �8�

The boundary conditions are used to writeZ
@X

ÿai r$V n dl �
Z
@X

ai JNF dl �9�

Then Equations 5, 7 and 8 lead toZZ
X

r $ai$V dx dy � ÿ
Z
@X

ai JNF dl �10�

In the Galerkin formulation, V is approximated on
each ®nite element using a Lagrange polynomial
function aj and the value of potential Vj at node j

V �
X

j

ajVj

Using this approximation in Equation 10 leads toZZ
X

r$aj $ai dx dy

0@ 1AVj � ÿ
Z
@X

ai JNF dl 8i; 8j

�11�
Equation 1 is then transformed in a set of equations
expressed in matrix form as

MI � KS �12�

where matrices M � MVi;j
� �

, I � Vi� � and KS � KSVi� �
are all made up of two generic integrals

MVi;j �
ZZ

X

r$aj$ai dx dy �13�

KSVi �
Z
@X

ÿai JNF dl �14�

All these integrals are preprogrammed as Fortran
subroutines and are found in a F.E. data base. A
speci®c module named `GENERE' using such pre-
de®ned integrals allows the user to describe each term
of the matrices M, I and KS. In the same way, the
physical properties of each region, such as the electric
conductivity, r, and the boundary conditions are
described by the user as Fortran routines in a speci®c
module named `PROPHY'.

After Fortran compilation and linking to the
general solver code, the user has a new F.E. equation
able to solve the Laplace equation for any physical
problem de®ned with the boundary conditions
(Equations 2±4).

The whole computing process is then very simple:

(i) The 2D or 3D problem physical geometry is
drawn using a speci®c C.A.O. tool. Each region
is described and meshed using triangular or
quadrangular ®nite elements.

(ii) The physical properties are described for each
region, and an appropriate resolution algorithm
is selected in a module named `PROPHY'.

(iii) The problem is solved using a module named
`SOLVER'.

(iv) The numerical results are obtained with the help
of a graphical tool named `XPLOIT'.
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